
2025-07-03 1/3 POSIX / ANSI / ISO C

wiki.xw3.org - https://wiki.xw3.org/

POSIX / ANSI / ISO C

ANSI / ISO C

ANSI C / ISO C are standards designed to support an incredibly broad array of different systems and
allow compiling legacy code from ages past. We can call this “standard C”. Because C is standardized,
there are many implementations.

Half of the C standard refers to the language itself, which includes specific guarantees about what
types are available, what syntax you can use, et cetera. These guarantees are sometimes too broad
to work with comfortably. For example, in standard C, it is guaranteed that at least the following types
exist:

Unordered List Itemshort int, which represents at least -32767..+32767
int, which represents at least -32767..+32767
long int, which represents at least -2147483647..+2147483647

Each type in the list must be wider than the last, but there is a lot of leeway for systems to choose
different sizes. For example, on a DSP or an old supercomputer all of the types might be exactly the
same size. There is also no guarantee that a byte has 8 bits (maybe it has more than 8 bits).

The other half of the C standard specifies the standard library, such as which functions are provided
by each header. For example, the <stdlib.h> header must define the malloc() function.

A program written in standard C can be run almost anywhere, as long as you are careful not to rely on
non-portable constructs. However, the C standard does not provide very much functionality… so
these portable programs cannot do much more than open files or read input from the user on the
console.

There are several versions of standard C. The most common ones are C89/C90, C99, and C11. It is not
uncommon to find systems which only support C90 (for example, MSVC).

http://en.wikipedia.org/wiki/ANSI_C

POSIX

POSIX is a much larger and more comprehensive standard which includes standard C as a part of it.
POSIX also specifies parts of the operating system. Because POSIX is standardized, there are many
implementations.

On a POSIX system, there are some restrictions on the C implementation. For example, on POSIX:

A byte is always 8 bits
Integers are always two's-complement
The / character is always used as a path separator
Certain errors are signaled by setting errno

POSIX also specifies some additions the the standard library, such as

http://en.wikipedia.org/wiki/ANSI_C


Last update: 2024-05-13 posix_ansi_iso_c https://wiki.xw3.org/posix_ansi_iso_c?rev=1715642172

https://wiki.xw3.org/ Printed on 2025-07-03

Network sockets
Creating new processes
Multithreaded programming
Memory-mapped IO

A program written to run on POSIX can be run on Linux, Unix, OS X, or other POSIX-compliant
systems. These programs will usually require extra work before they can be run on Windows. The
POSIX standard includes interfaces for things like networking, process creation, shells, terminals, and
filesystems. It is not too difficult to write a sophisticated POSIX program like a web server or a
command-line shell.

There are several versions of POSIX.

http://en.wikipedia.org/wiki/POSIX

GLibc

GLibc is the GNU C library. It implements the standard C library, POSIX extensions to the C library, and
some extra functionality. GLibc is not standardized and there is only one implementation.

For example, GLibc provides asprintf(), which is like sprintf() but it allocates the buffer automatically.

Programs that use GLibc extensions are not generally portable, although certain extensions are also
available on BSD systems.

http://en.wikipedia.org/wiki/GNU_C_Library

Win32

Win32 is an API specific to Windows. The API provides functions not available in standard C, such as
functions for creating a graphical user interface. Win32 is not standardized and there are only two
implementations (Windows and WINE). Win32 provides a large set of interfaces, such as:

Network sockets
Creating new processes
Multithreaded programming
Memory-mapped IO

These interfaces overlap with POSIX, but the function calls are mostly different. For example, on
Windows you can create a mutex with CreateMutexEx(), and on POSIX you create a mutex with
pthreadmutexinit(). The exception to this is network sockets, which are mostly the same between
Windows and POSIX.

Programs written for Win32 will generally only run on Windows and possibly WINE.

http://en.wikipedia.org/wiki/Windows_API

http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/GNU_C_Library
http://en.wikipedia.org/wiki/Windows_API


2025-07-03 3/3 POSIX / ANSI / ISO C

wiki.xw3.org - https://wiki.xw3.org/

http://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Libr
ary

MFC is a library provided by Microsoft which makes it easier to write Win32 applications. It is
effectively obsolete and should not be used for new projects. MFC is not standardized and there is
only one implementation.

http://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Library

Source:
https://stackoverflow.com/questions/19697152/what-is-posix-any-other-interface-standards-which-can
-replace-it

From:
https://wiki.xw3.org/ - wiki.xw3.org

Permanent link:
https://wiki.xw3.org/posix_ansi_iso_c?rev=1715642172

Last update: 2024-05-13

http://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Library
https://stackoverflow.com/questions/19697152/what-is-posix-any-other-interface-standards-which-can-replace-it
https://stackoverflow.com/questions/19697152/what-is-posix-any-other-interface-standards-which-can-replace-it
https://wiki.xw3.org/
https://wiki.xw3.org/posix_ansi_iso_c?rev=1715642172

	POSIX / ANSI / ISO C
	ANSI / ISO C
	POSIX
	GLibc
	Win32
	http://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Library


