
2026-01-27 1/7 AwesomeWM Drop-down Terminal

wiki.xw3.org - https://wiki.xw3.org/

Drop-down Terminal

Introduction

A drop-down terminal pops up from the top of the screen in video game console fashion and can be
toggled with a single hotkey. Applications such as Yakuake, Guake or Tilda provide drop-down
terminal functionality for the regular desktop environments. With awesome and the power of lua,
however, we can mimic this functionality and still use our precious light-weight terminal applications.

Adding the following function to your rc.lua and calling it in a keybinding will create a new window for
the drop-down terminal when it does not exist, and will toggle between hidden and visible if one does
exist. The first argument is the program to run (eg. “urxvtc”), the second argument is the height
(absolute pixels when > 1 or a height percentage when < 1, 0.2 (20% of the screen height) by
default), and the third argument is the screen to toggle on. The second and third arguments are
optional.

Function

-- This function is for awesome versions prior to 3.4

dropdown = {}

function dropdown_toggle(prog, height, s)
 if s == nil then s = mouse.screen end
 if height == nil then height = 0.2 end
 if not dropdown[prog] then
 -- Create table
 dropdown[prog] = {}
 -- Add unmanage hook for dropdown programs
 awful.hooks.unmanage.register(function (c)
 for scr, cl in pairs(dropdown[prog])
do
 if cl == c then
 dropdown[prog][scr] = nil
 end
 end
 end)
 end
 if not dropdown[prog][s] then
 spawnw = function (c)
 -- Store client
 dropdown[prog][s] = c
 -- Float client
 awful.client.floating.set(c, true)
 -- Get screen geometry
 screengeom = screen[s].workarea
 -- Calculate height

Last update: 2023-08-28 awesomewm:drop-down_terminal https://wiki.xw3.org/awesomewm/drop-down_terminal?rev=1693229378

https://wiki.xw3.org/ Printed on 2026-01-27

 if height < 1 then
 height = screengeom.height*height
 end

 -- I like a different border with for the popup window
 -- So I don't confuse it with terminals in the layout
 bw = 2

 -- Resize client
 c:geometry({
 x = screengeom.x,
 y = screengeom.y - 1000,
 width = screengeom.width - bw,
 height = height - bw
 })

 -- Mark terminal as ontop
 -- c.ontop = true
 -- c.above = true
 c.border_width = bw

 -- Focus and raise client
 c:raise()
 client.focus = c

 -- Remove hook
 awful.hooks.manage.unregister(spawnw)
 end

 -- Add hook
 awful.hooks.manage.register(spawnw)

 -- Spawn program
 awful.util.spawn(prog)

 dropdown.currtag = awful.tag.selected(s)
 else
 -- Get client
 c = dropdown[prog][s]
 -- Switch the client to the current workspace

 -- Focus and raise if not hidden
 if c.hidden then
 awful.client.movetotag(awful.tag.selected(s), c)
 c.hidden = false
 c:raise()
 client.focus = c
 else
 if awful.tag.selected(s) == dropdown.currtag then
 c.hidden = true
 local ctags = c:tags()

2026-01-27 3/7 AwesomeWM Drop-down Terminal

wiki.xw3.org - https://wiki.xw3.org/

 for i, t in pairs(ctags) do
 ctags[i] = nil
 end
 c:tags(ctags)
 else
 awful.client.movetotag(awful.tag.selected(s), c)
 c:raise()
 client.focus = c
 end
 end
 dropdown.currtag = awful.tag.selected(s)
 end
end

Another solution

The previous solution have two little quirks: the console window is detected as the first window being
managed just after requesting one. There could be a race condition but it is unlikely. The second
associated quirk is that when you restart awesome, you lose the fact that this window is a drop-down
terminal. You now have one terminal which is sticky. This is a bit disturbing. Here is another solution
that works around this by relying on a name given to the dropdown terminal:

-- Quake like console on top
-- Similar to:
-- http://git.sysphere.org/awesome-configs/tree/scratch/drop.lua

-- But uses a different implementation. The main difference is that we
-- are able to detect the Quake console from its name
-- (QuakeConsoleNeedsUniqueName by default).

-- Use:

-- local quake = require("quake")
-- local quakeconsole = {}
-- for s = 1, screen.count() do
-- quakeconsole[s] = quake({ terminal = config.terminal,
-- height = 0.3,
-- screen = s })
-- end

-- config.keys.global = awful.util.table.join(
-- config.keys.global,
-- awful.key({ modkey }, "`",
-- function () quakeconsole[mouse.screen]:toggle() end)

-- If you have a rule like "awful.client.setslave" for your terminals,
-- ensure you use an exception for
-- QuakeConsoleNeedsUniqueName. Otherwise, you may run into problems
-- with focus.

Last update: 2023-08-28 awesomewm:drop-down_terminal https://wiki.xw3.org/awesomewm/drop-down_terminal?rev=1693229378

https://wiki.xw3.org/ Printed on 2026-01-27

local setmetatable = setmetatable
local string = string
local awful = require("awful")
local capi = { mouse = mouse,
 screen = screen,
 client = client,
 timer = timer }

-- I use a namespace for my modules...
module("quake")

local QuakeConsole = {}

-- Display
function QuakeConsole:display()
 -- First, we locate the terminal
 local client = nil
 local i = 0
 for c in awful.client.cycle(function (c)
 -- c.name may be changed!
 return c.instance == self.name
 end,
 nil, self.screen) do
 i = i + 1
 if i == 1 then
 client = c
 else
 -- Additional matching clients, let's remove the sticky bit
 -- which may persist between awesome restarts. We don't close
 -- them as they may be valuable. They will just turn into a
 -- classic terminal.
 c.sticky = false
 c.ontop = false
 c.above = false
 end
 end

 if not client and not self.visible then
 -- The terminal is not here yet but we don't want it yet. Just do
nothing.
 return
 end

 if not client then
 -- The client does not exist, we spawn it
 awful.util.spawn(self.terminal .. " " .. string.format(self.argname,
self.name),
 false, self.screen)
 return
 end

2026-01-27 5/7 AwesomeWM Drop-down Terminal

wiki.xw3.org - https://wiki.xw3.org/

 -- Comptute size
 local geom = capi.screen[self.screen].workarea
 local width, height = self.width, self.height
 if width <= 1 then width = geom.width * width end
 if height <= 1 then height = geom.height * height end
 local x, y
 if self.horiz == "left" then x = geom.x
 elseif self.horiz == "right" then x = geom.width + geom.x - width
 else x = geom.x + (geom.width - width)/2 end
 if self.vert == "top" then y = geom.y
 elseif self.vert == "bottom" then y = geom.height + geom.y - height
 else y = geom.y + (geom.height - height)/2 end

 -- Resize
 awful.client.floating.set(client, true)
 client.border_width = 0
 client.size_hints_honor = false
 client:geometry({ x = x, y = y, width = width, height = height })

 -- Sticky and on top
 client.ontop = true
 client.above = true
 client.skip_taskbar = true
 client.sticky = true

 -- This is not a normal window, don't apply any specific keyboard stuff
 client:buttons({})
 client:keys({})

 -- Toggle display
 if self.visible then
 client.hidden = false
 client:raise()
 capi.client.focus = client
 else
 client.hidden = true
 end
end

-- Create a console
function QuakeConsole:new(config)
 -- The "console" object is just its configuration.

 -- The application to be invoked is:
 -- config.terminal .. " " .. string.format(config.argname, config.name)
 config.terminal = config.terminal or "xterm" -- application to spawn
 config.name = config.name or "QuakeConsoleNeedsUniqueName" --
window name
 config.argname = config.argname or "-name %s" -- how to specify
window name

Last update: 2023-08-28 awesomewm:drop-down_terminal https://wiki.xw3.org/awesomewm/drop-down_terminal?rev=1693229378

https://wiki.xw3.org/ Printed on 2026-01-27

 -- If width or height <= 1 this is a proportion of the workspace
 config.height = config.height or 0.25 -- height
 config.width = config.width or 1 -- width
 config.vert = config.vert or "top" -- top, bottom or
center
 config.horiz = config.horiz or "center" -- left, right or
center

 config.screen = config.screen or capi.mouse.screen
 config.visible = config.visible or false -- Initially, not visible

 local console = setmetatable(config, { __index = QuakeConsole })
 capi.client.add_signal("manage",
 function(c)
 if c.instance == console.name and c.screen ==
console.screen then
 console:display()
 end
 end)
 capi.client.add_signal("unmanage",
 function(c)
 if c.instance == console.name and c.screen ==
console.screen then
 console.visible = false
 end
 end)

 -- "Reattach" currently running QuakeConsole. This is in case awesome is
restarted.
 local reattach = capi.timer { timeout = 0 }
 reattach:add_signal("timeout",
 function()
 reattach:stop()
 console:display()
 end)
 reattach:start()
 return console
end

-- Toggle the console
function QuakeConsole:toggle()
 self.visible = not self.visible
 self:display()
end

setmetatable(_M, { __call = function(_, ...) return QuakeConsole:new(...)
end })

This only works for applications that accept to be given a name through the command line (xterm,
rxvt). Example of use :

2026-01-27 7/7 AwesomeWM Drop-down Terminal

wiki.xw3.org - https://wiki.xw3.org/

local quake = require("quake")

local quakeconsole = {}
for s = 1, screen.count() do
 quakeconsole[s] = quake({ terminal = config.terminal,
 height = 0.3,
 screen = s })
end

config.keys.global = awful.util.table.join(
 config.keys.global,
 awful.key({ modkey }, "`",
 function () quakeconsole[mouse.screen]:toggle() end)

Source:
https://web.archive.org/web/20121101152450/http://awesome.naquadah.org/wiki/Drop-down_termina
l

From:
https://wiki.xw3.org/ - wiki.xw3.org

Permanent link:
https://wiki.xw3.org/awesomewm/drop-down_terminal?rev=1693229378

Last update: 2023-08-28

https://web.archive.org/web/20121101152450/http://awesome.naquadah.org/wiki/Drop-down_terminal
https://web.archive.org/web/20121101152450/http://awesome.naquadah.org/wiki/Drop-down_terminal
https://wiki.xw3.org/
https://wiki.xw3.org/awesomewm/drop-down_terminal?rev=1693229378

	[Drop-down Terminal]
	Drop-down Terminal
	Introduction
	Function
	Another solution

