2026-01-27 1/7 AwesomeWM Drop-down Terminal

AwesomeWM Drop-down Terminal

Introduction

A drop-down terminal pops up from the top of the screen in video game console fashion and can be
toggled with a single hotkey. Applications such as Yakuake, Guake or Tilda provide drop-down
terminal functionality for the regular desktop environments. With awesome and the power of lua,
however, we can mimic this functionality and still use our precious light-weight terminal applications.

Adding the following function to your rc.lua and calling it in a keybinding will create a new window for
the drop-down terminal when it does not exist, and will toggle between hidden and visible if one does
exist. The first argument is the program to run (eg. “urxvtc”), the second argument is the height
(absolute pixels when > 1 or a height percentage when < 1, 0.2 (20% of the screen height) by
default), and the third argument is the screen to toggle on. The second and third arguments are
optional.

Function

-- This function is for awesome versions prior to 3.4
dropdown = {}

function dropdown toggle(prog, height, s)
if s == nil then s = mouse.screen end
if height == nil then height = 0.2 end
if not dropdown[prog] then
-- Create table
dropdown[prog] = {}
-- Add unmanage hook for dropdown programs
awful.hooks.unmanage.register(function (c)
for scr, cl in pairs(dropdown[prog])
do
if cl == c then
dropdown[prog][scr] = nil
end
end
end)
end
if not dropdown[prog][s] then
spawnw = function (c)
-- Store client
dropdown[progl[s] = c
-- Float client
awful.client.floating.set(c, true)
-- Get screen geometry
screengeom = screen[s].workarea
-- Calculate height

wiki.xw3.org - https://wiki.xw3.org/

Last update: 2025-03-18

awesomewm:drop-down_terminal https://wiki.xw3.org/awesomewm/drop-down_terminal

-- Add hook

if height < 1 then
height screengeom.height*height
end

-- I like a different border with for the popup window
-- So I don't confuse it with terminals in the layout

bw = 2

-- Resize client
c:geometry({
X

y

screengeom. X,

height = height - bw

})
-- Mark terminal as ontop
-- c.ontop = true
-- c.above = true

c.border width = bw

-- Focus and raise client
c:raise()
client.focus = c

-- Remove hook
awful.hooks.manage.unregister(spawnw)

awful.hooks.manage.register(spawnw)

-- Spawn program
awful.util.spawn(prog)

dropdown.currtag = awful.tag.selected(s)

else

-- Get client
c = dropdown[prog][s]
-- Switch the client to the current workspace

-- Focus and raise if not hidden
if c.hidden then

awful.client.movetotag(awful.tag.selected(s), c)

c.hidden = false

c:raise()
client.focus = ¢
else
if awful.tag.selected(s) == dropdown.currtag then

c.hidden = true
local ctags = c:tags()

screengeom.y - 1000,
width = screengeom.width - bw,

https://wiki.xw3.org/

Printed on 2026-01-27

2026-01-27 3/7 AwesomeWM Drop-down Terminal

for i, t in pairs(ctags) do
ctags[i] = nil
end
c:tags(ctags)
else
awful.client.movetotag(awful.tag.selected(s), c)
c:raise()
client.focus = ¢
end
end
dropdown.currtag = awful.tag.selected(s)
end
end

Another solution

The previous solution have two little quirks: the console window is detected as the first window being
managed just after requesting one. There could be a race condition but it is unlikely. The second
associated quirk is that when you restart awesome, you lose the fact that this window is a drop-down
terminal. You now have one terminal which is sticky. This is a bit disturbing. Here is another solution
that works around this by relying on a name given to the dropdown terminal:

-- Quake like console on top
-- Similar to:
- - http://git.sysphere.org/awesome-configs/tree/scratch/drop. lua

-- But uses a different implementation. The main difference is that we
-- are able to detect the Quake console from its name
-- (QuakeConsoleNeedsUniqueName by default).

-- Use:

-- local quake = require("quake")

-- local quakeconsole = {}

-- for s = 1, screen.count() do

-- quakeconsole[s] = quake({ terminal = config.terminal,
- - height = 0.3,

-- screen = s })

-- end

-- config.keys.global = awful.util.table.join(

-- config.keys.global,

-- awful.key({ modkey }, "'",

- - function () quakeconsole[mouse.screen]:toggle() end)

-- If you have a rule like "awful.client.setslave" for your terminals,
-- ensure you use an exception for

-- QuakeConsoleNeedsUniqueName. Otherwise, you may run into problems
-- with focus.

wiki.xw3.org - https://wiki.xw3.org/

Last update: 2025-03-18 awesomewm:drop-down_terminal https://wiki.xw3.org/awesomewm/drop-down_terminal

local setmetatable = setmetatable
local string = string
local awful require("awful")
local capi { mouse = mouse,
screen = screen,
client = client,
timer = timer }

-- I use a namespace for my modules...
module("quake")

local QuakeConsole = {}

-- Display
function QuakeConsole:display()
-- First, we locate the terminal
local client = nil
local i = 0
for ¢ in awful.client.cycle(function (c)
-- c.name may be changed!

return c.instance == self.name
end,
nil, self.screen) do
i=1i+1
if i == 1 then
client = ¢
else

-- Additional matching clients, let's remove the sticky bit
-- which may persist between awesome restarts. We don't close
-- them as they may be valuable. They will just turn into a
-- classic terminal.
c.sticky = false
c.ontop = false
c.above = false
end

end

if not client and not self.visible then
-- The terminal is not here yet but we don't want it yet. Just do
nothing.
return
end

if not client then
-- The client does not exist, we spawn it

awful.util.spawn(self.terminal .. " " .. string.format(self.argname,
self.name),
false, self.screen)
return
end

https://wiki.xw3.org/ Printed on 2026-01-27

2026-01-27 5/7 AwesomeWM Drop-down Terminal

-- Comptute size

local geom = capi.screen[self.screen].workarea

local width, height = self.width, self.height

if width <= 1 then width = geom.width * width end

if height <= 1 then height = geom.height * height end
local x, y

if self.horiz == "left" then x = geom.x

elseif self.horiz == "right" then x = geom.width + geom.x - width
else x = geom.x + (geom.width - width)/2 end

if self.vert == "top" then y = geom.y

elseif self.vert == "bottom" then y = geom.height + geom.y - height

else y = geom.y + (geom.height - height)/2 end

-- Resize

awful.client.floating.set(client, true)

client.border width = 0

client.size hints honor = false

client:geometry({ x = x, y =y, width = width, height = height })

-- Sticky and on top
client.ontop = true
client.above = true
client.skip taskbar = true
client.sticky = true

-- This is not a normal window, don't apply any specific keyboard stuff
client:buttons({})
client:keys({})

-- Toggle display

if self.visible then
client.hidden = false
client:raise()
capi.client.focus = client

else
client.hidden = true

end

end

-- Create a console
function QuakeConsole:new(config)
-- The "console" object is just its configuration.

-- The application to be invoked is:

- - config.terminal .. " " string.format(config.argname, config.name)

config.terminal = config.terminal or "xterm" -- application to spawn

config.name config.name or "QuakeConsoleNeedsUniqueName" - -
window name

config.argname = config.argname or "-name %s" -- how to specify
window name

wiki.xw3.org - https://wiki.xw3.org/

Last update: 2025-03-18 awesomewm:drop-down_terminal https://wiki.xw3.org/awesomewm/drop-down_terminal

-- If width or height <= 1 this is a proportion of the workspace

config.height = config.height or 0.25 -- height

config.width = config.width or 1 -- width

config.vert = config.vert or "top" -- top, bottom or
center

config.horiz = config.horiz or "center" -- left, right or
center

config.screen = config.screen or capi.mouse.screen

config.visible config.visible or false -- Initially, not visible
local console = setmetatable(config, { index = QuakeConsole })
capi.client.add signal("manage",
function(c)
if c.instance == console.name and c.screen ==
console.screen then
console:display()

end
end)
capi.client.add signal("unmanage",
function(c)
if c.instance == console.name and c.screen ==

console.screen then
console.visible = false
end
end)

-- "Reattach" currently running QuakeConsole. This is in case awesome 1is
restarted.
local reattach = capi.timer { timeout = 0 }
reattach:add signal("timeout",
function()
reattach:stop()
console:display()
end)
reattach:start()
return console
end

-- Toggle the console

function QuakeConsole:toggle()
self.visible = not self.visible
self:display()

end

setmetatable(M, { call = function(, ...) return QuakeConsole:new(...)
end })

This only works for applications that accept to be given a name through the command line (xterm,
rxvt). Example of use :

https://wiki.xw3.org/ Printed on 2026-01-27

2026-01-27 717

AwesomeWM Drop-down Terminal

local quake = require("quake")

local quakeconsole = {}
for s = 1, screen.count() do

quakeconsole[s] = quake({ terminal = config.terminal,

(
height = 0
S

.3
screen = }

)

end

config.keys.global = awful.util.table.join(

config.keys.global,
awful.key({ modkey }, "'",

function () quakeconsole[mouse.screen]:toggle() end)

Source:

https://web.archive.org/web/20121101152450/http://awesome.naquadah.org/wiki/Drop-down_termina

From:
https://wiki.xw3.0rg/ - wiki.xw3.0rg

Permanent link:

https://wiki.xw3.org/awesomewm/drop-down_terminal

Last update: 2025-03-18

wiki.xw3.org - https://wiki.xw3.org/

https://web.archive.org/web/20121101152450/http://awesome.naquadah.org/wiki/Drop-down_terminal
https://web.archive.org/web/20121101152450/http://awesome.naquadah.org/wiki/Drop-down_terminal
https://wiki.xw3.org/
https://wiki.xw3.org/awesomewm/drop-down_terminal

	[AwesomeWM Drop-down Terminal]
	AwesomeWM Drop-down Terminal
	Introduction
	Function
	Another solution

